Ternary Linear Codes and Quadrics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary Linear Codes and Quadrics

For an [n, k, d]3 code C with gcd(d, 3) = 1, we define a map wG from Σ = PG(k − 1, 3) to the set of weights of codewords of C through a generator matrix G. A t-flat Π in Σ is called an (i, j)t flat if (i, j) = (|Π ∩ F0|, |Π ∩ F1|), where F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod 3)}, F1 = {P ∈ Σ | wG(P ) 6≡ 0, d (mod 3)}. We give geometric characterizations of (i, j)t flats, which involve quadrics. As an a...

متن کامل

New Ternary Linear Codes 1

Let n; k; d; q]-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF (q). In this paper, eighteen codes are constructed which improve the known lower bounds on minimum distance.

متن کامل

Some New Ternary Linear Codes

Abstract: Let  q d k n , , code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the most important problems in coding theory is to construct codes with best possible minimum distances. In this paper new one-generator quasi-cyclic (QC) codes over GF (3) are presented. Some of the results are received by construction X.

متن کامل

Some new quasi - twisted ternary linear codes ∗

Let [n, k, d]q code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6]. 2010 ...

متن کامل

Some New Optimal Ternary Linear Codes

Let d3(n, k) be the maximum possible minimum Hamming distance of a ternary [n, k, d; 3]-code for given values of n and k. It is proved that d3(44, 6) = 27, d3(76, 6) = 48, d3(94, 6) = 60, d3(124, 6) = 81, d3(130, 6) = 84, d3(134, 6) = 87, d3(138, 6) = 90, d3(148, 6) = 96, d3(152, 6) = 99, d3(156, 6) = 102, d3(164, 6) = 108, d3(170, 6) = 111, d3(179, 6) = 117, d3(188, 6) = 123, d3(206, 6) = 135,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2009

ISSN: 1077-8926

DOI: 10.37236/98